Phosphotyrosine phosphatase R3 receptors: Origin, evolution and structural diversification
نویسندگان
چکیده
Subtype R3 phosphotyrosine phosphatase receptors (R3 RPTPs) are single-spanning membrane proteins characterized by a unique modular composition of extracellular fibronectin repeats and a single cytoplasmatic protein tyrosine phosphatase (PTP) domain. Vertebrate R3 RPTPs consist of five members: PTPRB, PTPRJ, PTPRH and PTPRO, which dephosphorylate tyrosine residues, and PTPRQ, which dephosphorylates phophoinositides. R3 RPTPs are considered novel therapeutic targets in several pathologies such as ear diseases, nephrotic syndromes and cancer. R3 RPTP vertebrate receptors, as well as their known invertebrate counterparts from animal models: PTP52F, PTP10D and PTP4e from the fruitfly Drosophila melanogaster and F44G4.8/DEP-1 from the nematode Caenorhabditis elegans, participate in the regulation of cellular activities including cell growth and differentiation. Despite sharing structural and functional properties, the evolutionary relationships between vertebrate and invertebrate R3 RPTPs are not fully understood. Here we gathered R3 RPTPs from organisms covering a broad evolutionary distance, annotated their structure and analyzed their phylogenetic relationships. We show that R3 RPTPs (i) have probably originated in the common ancestor of animals (metazoans), (ii) are variants of a single ancestral gene in protostomes (arthropods, annelids and nematodes); (iii) a likely duplication of this ancestral gene in invertebrate deuterostomes (echinodermes, hemichordates and tunicates) generated the precursors of PTPRQ and PTPRB genes, and (iv) R3 RPTP groups are monophyletic in vertebrates and have specific conserved structural characteristics. These findings could have implications for the interpretation of past studies and provide a framework for future studies and functional analysis of this important family of proteins.
منابع مشابه
The Tetraspanin-Associated Uroplakins Family (UPK2/3) Is Evolutionarily Related to PTPRQ, a Phosphotyrosine Phosphatase Receptor
Uroplakins are a widespread group of vertebrate integral membrane proteins that belong to two different families: UPK1a and UPK1b belong to the large tetraspanin (TSPAN) gene family, and UPK3a, UPK3b, UPK3c, UPK3d, UPK2a and UPK2b form a family of their own, the UPK2/3 tetraspanin-associated family. In a previous study, we reported that uroplakins first appeared in vertebrates, and that uroplak...
متن کاملTyrosine-phosphorylated caveolin is a physiological substrate of the low M(r) protein-tyrosine phosphatase.
Low M(r) phosphotyrosine-protein phosphatase is involved in the regulation of several tyrosine kinase growth factor receptors. The best characterized action of this enzyme is on the signaling pathways activated by platelet-derived growth factor, where it plays multiple roles. In this study we identify tyrosine-phosphorylated caveolin as a new potential substrate for low M(r) phosphotyrosine-pro...
متن کاملLow molecular weight phosphotyrosine protein phosphatase translocation during cell stimulation with platelet-derived growth factor.
Low Mr phosphotyrosine protein phosphatase (PTP) is a cytosolic enzyme whose activity upon platelet-derived growth factor (PDGF) and insulin receptors has been demonstrated in vivo. In our study we demonstrate that this enzyme, both naturally expressed and overexpressed in NIH/3T3 fibroblasts, translocates from the cytosol to the Triton X-100 insoluble fraction following stimulation with PDGF. ...
متن کاملEvolution of JAK-STAT Pathway Components: Mechanisms and Role in Immune System Development
BACKGROUND Lying downstream of a myriad of cytokine receptors, the Janus kinase (JAK)-Signal transducer and activator of transcription (STAT) pathway is pivotal for the development and function of the immune system, with additional important roles in other biological systems. To gain further insight into immune system evolution, we have performed a comprehensive bioinformatic analysis of the JA...
متن کاملAngiotensin II AT(2) receptors inhibit growth responses in proximal tubule cells.
Angiotensin II (ANG II) subtype 2 (AT(2)) receptors are expressed in the adult kidney, but the effects of AT(2) receptor activation are unclear. The proximal tubule cell line LLC-PK(1) was transfected with a plasmid containing cDNA for the rat AT(2) receptor. In transfected cells, specific binding of (125)I-labeled ANG II was detected (dissociation constant = 0.81 nM), with inhibition by the AT...
متن کامل